

ALLOY 304/304L SPECIFICATIONS: UNS S30400 / S30403

ALLOY 304/304L - UNS S30400 / S304033

Penn Stainless inventory now includes Alloy 304/304L (UNS S30400 / S30403), in sheet, sheet coil, plate, plate coil, round bar, processed flat bar and tubular products. Alloy 304/304L is ideally suited for home and commercial applications.

GENERAL PROPERTIES

Alloy 304 / 304L a T-300 series stainless steel austenitic, which has a minimum of 18% chromium and 8% nickel. Type 304 has a maximum carbon of 0.07% while Type 304L carbon maximum is 0.030. It is the standard "18/8 stainless" that is commonly found in pans and cooking tools. Alloys 304 & 304L are the most versatile and widely used alloy in the stainless steel family. Ideal for a wide variety of home and commercial applications, Alloys 304 & 304L exhibits excellent corrosion resistance and has a high ease of fabrication, outstanding formability. The austenitic stainless steels are also considered to be the most weldable of the high-alloy steels and can be welded by all fusion and resistance welding processes.

APPLICATIONS

Alloy 304/304L Stainless Steel is used in a wide variety of home and commercial applications, including:

- Food processing equipment, particularly in beer brewing, milk processing, and wine making
- Kitchen benches, sinks, troughs, equipment, and appliances
- · Architectural trim and molding
- · Automotive and aerospace structural use
- · Construction material in large buildings
- Chemical containers, including for transport
- · Heat exchangers
- Nuts, bolts, screws, and other fasteners in the marine environment
- · Dyeing industry
- · Woven or welded screens for mining, quarrying & water filtration

STANDARDS 304 / 304L

ASTM/ASMEUNS S30400 / S30403 EURONORM1.4301 / 1.4303

AFNOR......Z5 CN 18.09 / Z2 CN 18.10 DINX5 CrNi 18 10 / X2 CrNi 19 11 PENN STAINLESS CAN PROVIDE YOU WITH CUSTOM CUT, SIZED AND PROCESSED STAINLESS PRODUCT THROUGH ANY OF OUR AVAILABLE PROCESSING METHODS:

- SHEAR CUTTING
- PLASMA CUTTING
- HQ PLASMA CUTTING
- DYNAMIC WATER JET CUTTING
- LASER CUTTING
- SAW CUTTING
- GAUER PROCESSING
- Machine Cutting

INVENTORY:

- SHEET
- PLATE
- PERFORATED
- FLAT & EXPANDED
- ROUND BAR
- SQUARE BAR
- HEX BAR
- ROLLED FLAT BAR
- S/E PROCESSED BAR
- THREADED ROD
- HALF ROUND
- TUBULAR PRODUCTS (WELDED & SEAMLESS)
- STRUCTURALS

CORROSION RESISTANCE

- Resistance to corrosion in oxidizing environments is a result of the 18 to 19% chromium that the 304 alloys contain.
- Resistance to moderately aggressive organic acids is a result of the 9 to 11% nickel that the 304 alloys contain.
- At times, alloy 304L may show a lower corrosion rate than the higher carbon Alloy 304; otherwise, the 304, 304L, and 304H may be considered to perform uniformly in most corrosive environments.
- Alloy 304L is preferred for use in environments sufficiently corrosive to cause intergranular corrosion of welds and heat-affected zones on susceptible alloys.

HEAT RESISTANCE

- Good oxidation resistance in intermittent service to 1600°F and in continuous service to 1690°F.
- Continuous use of 304 in the 800-1580°F range is not recommended if subsequent aqueous corrosion resistance is important.
- Grade 304L is more resistant to carbide precipitation and can be heated into the above temperature range.
- Grade 304H has higher strength at elevated temperatures, so it is often used for structural and pressure-containing applications at temperatures above about 930°F and up to about 1470°F.

WELDING CHARACTERISTICS

- Excellent welding properties; post-weld annealing is not required when welding thin sections. Two important considerations in producing weld joints in the austenitic stainless steels are:
 - 1) preservation of corrosion resistance
 - 2) avoidance of cracking

PROCESSING / HOT FORMING

- To forge, heat uniformity to 2100 / 2300 °F.
- Do not forge below 1700 °F.
- Forging can be air cooled without danger of cracking

PROCESSING / COLD FORMING

- Its austenitic structure allows it to be deep-drawn without intermediate annealing, Making this the stainless steel grade of choice in the manufacturing of sinks, hollow-ware and saucepans.
- These grades work harden rapidly. To relieve stresses produced in severe forming or spinning, parts should be full annealed or stress relief annealed as soon as possible after forming.

MACHINABILITY

• The use of chip breakers is advised since the chips can be stringy. Stainless steel work harden rapidly, heavy positive feeds, sharp tooling, and a rigid set-up should be used of cut below the work-hardened layer resulting from the previous passes.

CHEMICAL PROPERTIES

	С	Mn	Si	Р	S	Cr	Ni	N
304	0.07 max	2.0 max	0.75 max	0.45 max	0.03 max	min: 18.0 max: 20.0	min: 8.0 max: 10.5	-
304L	0.030 max	2.0 max	0.75 max	0.45 max	0.03 max	min: 18.0 max: 20.0	min: 8.0 max: 12.0	0.10 max

MECHANICAL PROPERTIES

Grade	Tensile Strength ksi (min)	Yield Strength 0.2% ksi (min)	Elongation %	Hardness Brinell (max)	Hardness Rockwell B (max)
304	75	30	40	201	92
304L	70	25	40	201	92

PHYSICAL PROPERTIES

Density (lb/in³)	Thermal Conductivity (BTU/hr•ft•°F)	Electrical Resistivity (in x 10 ⁻⁶)	Modulus of Elasticity (psi x 10 ⁶)	Coefficient of Thermal Expansion (in/in)/°F x 10 ⁻⁶	Specific Heat (BTU/lb/°F)	Melting Range (°F)
at 68°F: 0.285	9.4at 212 ºF	28.3 at 68 °F	28	9.4 at 32 - 212°F	0.1200 at 68°F to 212ºF	2,550 to 2,590
	12.4 at 932 ºF	39.4 at 752 ºF		10.2 at 32 - 1000°F		
		49.6 at 1652 °F		10.4 at 32 - 1200°F		

Penn Stainless Products, Inc • 190 Kelly Road • Quakertown, Pennsylvania 18951 USA Toll Free: 1-800-222-6144 • Phone: 215-536-3053 • Fax: 215-536-3255 • E-mail: sales@pennstainless.com